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ABSTRACT: How does the environment, particu-
larly the social environment, influence brain and behav-
ior and what are the underlying physiologic, molecular,
and genetic mechanisms? Adaptations of brain and be-
havior to changes in the social or physical environment
are common in the animal world, either as short-term
(i.e., modulatory) or as long-term modifications (e.g., via
gene expression changes) in behavioral or physiologic
properties. The study of the mechanisms and constraints
underlying these dynamic changes requires model sys-
tems that offer plastic phenotypes as well as a sufficient
level of quantifiable behavioral complexity while being

accessible at the physiological and molecular level. In
this article, I explore how the new field of functional
genomics can contribute to an understanding of the
complex relationship between genome and environment
that results in highly plastic phenotypes. This approach
will lead to the discovery of genes under environmental
control and provide the basis for the study of the inter-
relationship between an individual’s gene expression
profile and its social phenotype in a given environmental
context. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 272–282, 2003

Keywords: neural and behavioral plasticity; genomics;
brain and behavior

INTRODUCTION

How nature and nurture contribute to who we are,
what we do, and why we do it, has long been debated
by scientists and philosophers alike. We now know
that there are biologic roots to our behavior. In fact,
behavioral genetics has provided us with a wealth of
information regarding the roles of individual genes in
the implementation of behavior. Yet behavior (just
like any other phenotypic trait) is commonly influ-
enced by both environmental and epigenetic factors
(see Pigliucci, 2001). Because of this intricate rela-
tionship between genes and environment, we can dis-
tinguish four major challenges facing the genetic
study of behavior that have to be addressed before we
will gain a better understanding of the genetic mech-
anisms underlying behavior.

(1) First, the genetics of behavior (and of most

common diseases) requires the dissection and analysis
of complex phenotypes or traits. Complex traits are
determined by many factors (genetic, epigenetic, and
environmental) whose interactions are nonlinear and
often unpredictable. As a consequence, the genetic
architecture of a complex trait cannot be derived from
the individual effects of each of the component factors
alone, however well studied they are. It is in principle
possible to define the genetic components of a com-
plex trait in terms of Mendelian segregation and lo-
cation along a genetic map. It is, however, crucial to
recognize that the genetic architecture is not so much
a fundamental biological attribute of a trait as it is a
characteristic of a trait in a particular population de-
pendent on gene and genotype frequencies, the distri-
butions of environmental factors, age and sex, etc.

For example, in typical, late-onset Parkinson Dis-
ease, a neurodegenerative disorder that is associated
with a reduction of dopaminergic activity in the sub-
stantia nigra, tracking down disease-causing genes
has been elusive. However, the existence of “suscep-
tibility” genes has been suggested (Martin et al.,
2001), particularly in the context of the alleged dis-
ease-causing role of environmental toxins (Checko-
way and Nelson, 1999). Several twin studies have so
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far been unable to identify genetic factors (Ward et
al., 1983; Tanner et al., 1999). Surprisingly, patients
with Parkinson often have peculiar premorbid person-
ality traits (e.g., industriousness, punctuality, lack of
novelty seeking, low life-time risk for cigarette smok-
ing) whose relevance for the disease onset is entirely
unclear (Menza, 2000).

Clearly, if many genes contribute to a given com-
plex phenotype, it can become difficult to dissect its
genetic basis, even when a few candidate genes have
been identified (Tabor et al., 2002). Although one
particular gene may contribute significantly to the trait
(within a given genetic and environmental back-
ground), one often can only estimate how many other
loci are involved. To solve this problem, researchers
have developed a range of strategies, the most impor-
tant of which is the mapping of quantitative trait loci
(QTL) to defined chromosomal locations along the
genome (see Flint, this issue). However, it is often
challenging to make the connection between a given
marker (that represents a QTL on the genomic map)
and the actual gene (or group of genes) that participate
in the quantitative trait under study.

(2) Another problem facing the genetics of com-
plex traits arises due to the fact that the contribution
of genes may be epistatic rather than additive
(Wade, 2001; Wade et al., 2001). Behavioral ge-
neticists encounter epistasis (gene– gene interac-
tions) most often as differences in phenotype that
relate to the genetic background or “modifier
genes” of the animal strain used (Gerlai, 2001;
Nadeau, 2001). These gene interactions are nonlin-
ear and intricate, which greatly complicates the
identification and mapping of genes underlying a
trait. Similarly, many gene-targeting studies (where
one particular gene was “knocked out” in a trans-
genic animal) have shown that phenotypes can dif-
fer greatly depending on genetic background and
“compensatory mechanisms” (Gerlai, 2001).

(3) The relationship between genotype and envi-
ronment (G � E) presents a third problem confound-
ing the study of complex behavior. In most behavioral
genetic experiments environmental conditions are
kept constant (for a discussion of standardization see
Würbel, 2002; van der Staay and Steckler, 2002).
However, it has become increasingly clear that com-
plex and nonlinear G � E interactions exist (Pigliucci,
2001; Sokolowski & Wahlsten, 2001; Wade, 2001). A
striking example of the complex interplay between
genotype and social environment has been presented
recently. Caspi et al. (2002) showed in a human
population that a polymorphism in the promoter re-

gion of the monoamine oxidase A gene is correlated
with violent behavior in adult males, but only in men
who were maltreated as children.

In a different study, Sillaber et al. (2002) showed
that mice lacking the corticotropin-releasing hormone
receptor (CRH1-R) show enhanced and persistent al-
cohol consumption (compared with wild-type con-
trols) only after stressful experiences such as social
defeat. Also in mice, social stress exacerbates stroke
outcome by suppressing expression of Bcl-2, a proto-
oncogene that promotes cell survival and protects
against cell-death (De Vries et al., 2001).

Finally, the increase in mortality (mostly through
coronary heart disease) in Eastern Europe after the
dissolution of the Soviet Union is a sobering example
of G � E interactions. Psychosocial stressors as a
consequence of societal uncertainty are thought to be
the primary cause of this unexpected change (Stone,
2000).

Many studies have correlated differences in behav-
ioral phenotypes with differences in the nervous sys-
tem. Often, the conclusion has been that the neural
differences are causally responsible for the behavioral
differences observed. For example, LeVay (1991) re-
ported in a widely cited article that the volume of a
nucleus in the anterior hypothalamus was larger in
heterosexual than homosexual men. Many interpreted
this result as evidence that differences in the brain
caused the observed differences in sexual behavior,
possibly reflecting the influence of genetic factors
during development. However, until cause and effect
have been identified, the alternative explanation that
these differences were a consequence of years of
differential sexual behavior is just as valid. In this
context it is interesting to note that in adult male rats
differences in sexual experience lead to differences in
motor neuron size (Breedlove, 1997). It is important
to keep in mind that both genotype and environment
contribute to the phenotype.

(4) Finally, means of inheritance exist that are not
dependent on DNA. During gametogenesis, epige-
netic modifications of the genome occur (i.e.,
genomic imprinting), which can lead to profound be-
havioral differences in the offspring (Li et al., 1999;
Keverne, 2001). Furthermore, maternal factors in the
egg (Davdison, 1986), maternal care (Meaney, 2001),
as well as traditions (mediated by social learning;
Avital and Jablonka, 2000) can contribute to the trans-
mission of neural and behavioral phenotypes. As a
consequence, a purely gene-based approach to the
dissection of complex phenotypes may overlook im-
portant factors of inheritance for a given trait.
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FUNCTIONAL GENOMICS OF NEURAL
AND BEHAVIORAL PLASTICITY

In this essay I will introduce a conceptual framework
that aims to elucidate neural and behavioral plasticity
by applying a functional genomics approach. I believe
that this approach is complementary to the approaches
conventionally used in behavioral genetics, and that it
may help to overcome some of the shortcomings
discussed above.

The analysis begins at the level of the phenotype
by describing and analyzing the neural, endocrine,
and behavioral phenotypes that an organism can po-
tentially realize depending on environmental condi-
tions. By integrating concepts from neurobiology,
ethology, and evolutionary biology with powerful
genomic technologies this approach will facilitate a
more comprehensive understanding of the roles that
genes and environment play in the dynamic and plas-
tic sculpting of brain and behavior throughout life.

Plasticity in the nervous system comprises the
functional and structural changes in information pro-
cessing after the initial formation of neuronal con-
tacts. This is obviously a very general definition,
which nevertheless has proven to be useful, and has
allowed us to gain insights into many plastic pro-
cesses in the brain. Figure 1 illustrates the different

processes and time scales where plasticity can be
adaptive. In cases where the frequency of the envi-
ronmental change (the stimulus) is high or when im-
mediate action is required, nervous systems can re-
spond quickly by means of modulation or through
learning. Those dynamic changes of the internal state
of an animal (e.g., motivation, memory trace) are
usually achieved, at least initially, by changes in neu-
ral activity and excitability or by endocrine responses.
Short-term changes will then often lead to subsequent
changes in brain and behavior (e.g., memory forma-
tion) through differential gene expression as well as
structural and physiologic changes. Environmental
stimuli that are slow or relatively infrequent can alter
developmental trajectories and shift neural function-
ing throughout life history, even in adult animals (e.g.,
seasonal and use-dependent changes).

CICHLID FISHES AS A MODEL
SYSTEM FOR THE STUDY OF
PLASTICITY

It is important to note that plasticity as it relates to
changes in the nervous system (and, subsequently,
behavior) after a change in the (social) environment is
only a subset of phenotypic plasticity. Over the last

Figure 1 A concept map of phenotypic plasticity as it applies to brain and behavior. See
explanation in text.
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decade, the study of adaptive phenotypic plasticity
has become a major area of research within evolu-
tionary biology (Schlichting and Pigliucci, 1998; Pig-
liucci, 2001). Phenotypic plasticity is seen as a reflec-
tion of the reaction norm (as determined by the
genotype) that buffers the organism against fluctua-
tions in the environment. Changes in morphology,
physiology, and behavior as they relate to survival
and reproductive fitness have long been studied within
the context of life history theory (Stearns, 1992) and
the tradeoffs have been analyzed in much detail in a
few select model systems (Zera and Harshman, 2001).
As an example, consider the differential allocation of
resources towards growth and reproduction in the
African cichlid fish Astatotilapia (Haplochromis) bur-
toni (Hofmann et al., 1999): Reproductively active
territorial males spend all their time and energy on
territory maintenance and mate attraction (as well as
sperm production), whereas nonreproductive males
spend most of their time feeding and, as a result, show
increased growth. Once a subordinate animal has
grown sufficiently to challenge a territory owner, a
rank reversal accompanied by a change in phenotype
often occurs, as size is an important predictor of
dominance.

Other cichlid species show a comparable pheno-
typic diversity, although the cellular and physiologic
mechanisms have yet to be studied in detail. It is
believed that the extreme morphologic as well as
behavioral plasticity exhibited by species from this
family of fishes have contributed to the astonishing
radiations of species with varied feeding types and
diverse social phenotypes (Barlow, 2000). Their re-
markable plasticity both within and across closely
related species makes cichlids an ideal model for the
comparative study of complex and plastic behaviors.

GENE EXPRESSION PROFILING IN
THE BRAIN

The basic idea of the functional genomics approach to
phenotypic plasticity is to monitor the activity of
thousands of genes simultaneously in a particular
tissue or brain area while the organism is undergoing
environmentally or developmentally induced plastic
change. Differentially expressed genes are then hy-
pothesized to be involved, either directly or indirectly,
in the implementation of the respective phenotype.

The (nearly) completed sequencing of several an-
imal genomes (human, mouse, pufferfish, zebrafish,
fruitfly, nematode) has provided us with a mountain
of information that we have just begun to mine for

biologic meaning. Highly parallel high-throughput
technologies have become available that allow the
monitoring of the activity of thousands of genes si-
multaneously by measuring their mRNA abundance.
Examples include the PCR-based total gene expres-
sion analysis (TOGA, Sutcliffe et al., 2000) and serial
analysis of gene expression (SAGE, Velculescu et al.,
1995). The most prominent gene expression profiling
technique, however, utilizes DNA arrays, either as
macroarrays where cDNAs are spotted onto nylon
membranes (Barrett et al., 2001) or microarrays. In
the latter case, oligonucleotides or (annotated) cDNAs
representing known genes and splice variants are
spotted in high density onto glass microscope slides.
Alternatively, microarrays can consist of thousands of
cDNAs of unknown sequence derived for instance
from a cDNA library. This way microarrays can be
constructed for tissues where only few expressed
genes are known or for organisms whose genomes
have not yet been sequenced. cDNAs that are found to
be differentially present in a given experiment can
then later be accessed in the clone library and se-
quenced. These sequences can often be tentatively
assigned a particular function based on sequence sim-
ilarity as determined by BLAST in Genbank and
annotated genomic databases for particular organ-
isms. Although less expensive in terms of material
costs and time, anonymous arrays provide a lot less
information than annotated arrays.

Once candidate genes have been identified, they
can guide the discovery of the genetic pathways and
interactions relevant for the implementation or main-
tenance of a given phenotype. The potentially most
useful genes in the context of behavior are those that
have been shown to play a role in neurotransmission
and/or neuroendocrine systems (Pfaff, 2001). For ex-
ample, a preliminary screen that compared the preop-
tic areas of territorial and nonterritorial A. burtoni
cichlids yielded 59 differentially expressed genes,
among them neurotransmitter receptors, neuropep-
tides, ion channels, growth factors, and protein ki-
nases (Hofmann et al., 2001).

Applying genomics in neuroscience brings its own
challenges as well as opportunities (Cao and Dulac,
2001; Luo and Geschwind, 2001; Nisenbaum, 2002).
One obvious problem with gene expression profiling
in the nervous system is that because of the vast
diversity of neuronal cell types differences in biolog-
ically meaningful messages may go undetected be-
cause of their relatively low abundance. This problem
can in principle be solved by extracting RNA from
smaller, that is, more defined, areas of the brain until
one finally harvests only single cells (e.g., brain punch
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microsampling: Holter et al, 2001; laser capture mi-
crodissection: Scheidl et al., 2002; single-cell PCR:
Eberwine et al., 1992). However, these solutions re-
sult in very small amounts of mRNA. To overcome
this problem without pooling of tissue samples while
maintaining a reliable representation of transcriptional
complexity, several RNA amplification protocols
have been developed (linear: Wang et al., 2000;
Baugh et al., 2001; PCR-based: Dulac and Axel,
1995). Once sufficient amounts of RNA derived from
two different experimental conditions are available,
the resulting probes are labeled with two different
fluorescent dyes (usually the cyanines Cy3 and Cy5)
and used to target the array in a competitive manner.
An interesting new approach to consistent harvesting
of neural tissues across many animals was developed
by Brown et al. (2002), and is based on the idea of
using so-called “voxels,” that is, normalized cubes of
brain tissues as source of the RNA. If dissection is
done carefully, transcription profiling can also pro-
vide a molecular correlate for previously described
brain regions, thus providing an extension of neuro-
anatomy (Zhao et al, 2001).

It has become clear that repeated sampling, nor-
malization, and thorough statistical analysis, often
combined with modeling, are necessary to derive
meaningful insights from microarray experiments
(Novak et al, 2002). I do not have the space to discuss
the important problems associated with the analysis of
microarray data (but see Quackenbush, 2001; Tseng
et al., 2001; Nadon and Shoemaker, 2002). It should
suffice to mention that the field is now moving away
from the initial naı̈ve use of fold changes in gene
expression to more sophisticated statistical analyses
(e.g., Aach and Church, 2001; Kim et al., 2001).
Hierarchical clustering algorithms have become the
de facto standard to uncover patterns as well as to
facilitate comparisons across experiments (Eisen et
al., 1998).

Validation of microarray results is often required
before any biologic conclusion can be drawn because
false positives can mislead the investigator. Useful
validation techniques are Northern blot analysis and
increasingly quantitative real-time PCR (Rajeevan et
al., 2001). In situ hybridization is a particularly im-
portant tool for confirming the localization of differ-
entially represented mRNAs in the brain (Nisenbaum,
2002), and successful attempts of high-throughput
automation have been made with the GenePaint sys-
tem developed by Tecan in Switzerland (URL: http://
www.tecan.com/).

Clearly, expression profiling is the important first
step towards a genome-based analysis of brain and

behavior. However, one should keep in mind that
mRNA levels are not necessarily representative of
protein levels and/or activity. Although protein arrays
may be available in the future, proteomics in neuro-
science is just beginning (Grant and Blackstock,
2001), and at this point no such techniques are on
hand for large-scale high-throughput analysis of pro-
teins in the brain. For now, if we want to ascertain that
mRNA differences are representative of differences at
the protein level we will have to use conventional
techniques such as immuncocytochemistry, ELISA,
etc.

The wealth of data generated by a microarray can
be overwhelming. Bioinformatics tools are necessary
not only to handle and analyze the data, but also to be
able to interpret them. Fortunately, there are efforts
underway to implement a standardized set of rules for
performing as well as reporting microarray experi-
ments (the MIAME standards: Brazma et al., 2001;
Geschwind, 2001), which will facilitate both ex-
change and (meta-) analyses of large data sets. How-
ever, this will not be enough: imagine a particular set
of genes that may become upregulated when the syn-
apses of a cell undergo plastic change during devel-
opment and/or learning. Are genes that have been
implicated in synaptic remodeling differentially reg-
ulated? Are other coregulated genes members of the
same “synaptic remodeling pathway” but have not yet
been described in this context? How do we decide
which genes are the most promising to follow up on
once we have determined that they are differentially
expressed in our experimental system? Currently, all
we can do is use our expertise and experience, do
some background reading, and essentially answer all
these questions “by hand.”Because so much informa-
tion is generated by microarray experiments, it be-
comes clear that some standardized and computerized
way of data analysis and biologic interpretation will
become necessary.

Microbiologists have implemented pathway data-
bases containing detailed information on metabolic
pathways for microorganisms (Kanehisa et al., 2002;
Karp et al., 2001). They also have developed tools
that enable the mapping of microarray data onto these
databases. These tools enable the user to determine
instantly which pathways (and which of their genes)
were affected by a particular experimental treatment
(Dahlquist et al., 2002; Grosu et al., 2002). Such gene
expression maps can be used as a gene discovery tool
to identify coregulated genes or to uncover previously
unknown genetic functions. Within the neurosciences,
efforts to include neurobiologic data and knowledge
in Web-based databases have recently picked up
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speed, mostly within the functional imaging commu-
nity (Toga, 2002). However, to my knowledge, there
is no comprehensive searchable database dedicated to
molecular, physiologic, and anatomical pathways of
brain function.

Microarray technology is not limited to expression
profiling. For example, in so-called ChIP2 or ChIP
array experiments, genomic DNA that has been en-
riched for areas of active transcription in the genome
by chromatin immunoprecipitation (ChIP) with an
antibody that recognizes DNA binding proteins can be
hybridized to a microarray containing intergenic re-
gions (Ren et al., 2000). This approach facilitates the
discovery and analysis of previously unknown regu-
latory regions (Liu et al., 2002). Analysis of regula-
tion of genes and gene networks appear to be as
important for the understanding of regulation as the
examination of the coding regions of individual
genes.

REGULATION

The idea that changes in gene regulatory regions
have been a major driving force in the course of
evolution has first been put forward by Britten and
Davidson (1971). Subsequently, King and Wilson
(1975) proposed that mutations in regulatory se-
quences account for the major biologic differences
between species based on the observation that the
small genetic differences alone cannot explain the
huge morphologic and behavioral differences that
distinguish humans from chimpanzees. Recently,
Enard et al. (2002) have reported significant differ-
ences between these two species in the expression
profiles of several different tissues. Consequently,
spatial and temporal differences in gene expression
both during development and in the adult must play
an important role. Although there has been tremen-
dous progress in our understanding of the evolu-
tionary implications of transcription regulation dur-
ing development (see Chapter 7 in Carroll et al.,
2001), we still know very little as to how transcrip-
tional regulation in the nervous system produces
different physiologic and behavioral outcomes. In a
recent essay, Baker et al. (2001) propose on the
basis of work done in fruitflies that dedicated reg-
ulatory genes like fru “build” regulatory circuits in
the brain that are committed to specific complex
behaviors. Obviously, these behaviors and the un-
derlying circuits can be modified by experience. I
believe that a thorough comparison of expression
profiles will provide us with insights into the ge-

netic architectures that implement alternative phe-
notypes. It is still early days, but there are already
some fascinating results.

In cichlid fishes, for example, it is believed that
visually guided mate choice behavior is one of the
major forces driving the explosive radiation of this
group (Seehausen et al., 1997). At the ontogenetic
level, Kröger et al. (2001) have shown that exposure
to different visual environments modifies visual pro-
cessing in the cichlid retina. In addition, Carleton and
Kocher (2001) were able to show for three species of
Lake Malawi cichlids that their respective cone opsin
genes code for nearly identical visual pigments. Thus,
mutations in the coding regions cannot explain the
observed differences in spectral sensitivity between
these species. As these authors showed by means of
quantitative real-time PCR, the precise regulation of
relative expression levels of individual cone opsin
genes leads to sensory differences in the visual sys-
tem. They conclude that behaviorally and ecologically
relevant “variations in cichlid spectral sensitivity have
arisen through evolution of gene regulation, rather
than through changes in opsin amino acid sequence.”

Based on these insights I would like to speculate
that in cichlids, where plasticity is widespread and has
frequently been argued to be a major source of adap-
tive radiation in this group, the spatial and temporal
orchestration of a limited number of transcription
factors is used to implement different social pheno-
types. To illuminate this idea, imagine a contest where
the participants are all equipped with an identical set
of plastic building blocks. The task is to build a
vehicle that can move a distance between two points
in space. A number of solutions will be proposed
(e.g., automobile, bicycle, airplane, boat) that will all
do the job albeit with slight differences in perfor-
mance. Now suppose we select for speed and against
airborne vehicles: the bicycle and airplane would
quickly become “extinct,” while automobile and boat
may race head to head. However, each contestant
could quickly rebuild her plastic-block model (within
certain limits or constraints) to accommodate current
selection pressures. Figure 2 shows a more realistic
example where using the exact same building blocks
a fish exhibiting a red face and yellow stripes can
“switch colors.” Interpreted in biologic terms, subtle
regulatory responses to environmental changes that an
organism experiences may result in major changes in
gene expression and their downstream phenotypes.
For example, in A. burtoni, upregulation of hypotha-
lamic gonadotropin releasing hormone expression is a
consequence of social dominance and is followed by
a complex cascade of downstream events that ulti-
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mately result in rapid sexual maturation (Francis et
al., 1993; White et al., 2002). By the same token, as
indicated by the work of Carleton and Kocher (2001),
small changes in regulatory regions may have similar
effects over evolutionary time (which runs fast in
cichlids), thus providing a basis for the evolution of
novelties and ultimately speciation (Agrawal, 2001).

PLASTICITY AND ROBUSTNESS

The plastic building block metaphor exposes two
problems, however: first, living organisms will always
be subject to constraints that limit their plasticity, both
at the ontogenetic and evolutionary level. Second, to
respond to selection pressure, the plastic building
block player needs to rebuild the model from scratch,
which is biologically often not feasible. Interestingly,
this realization leads to a question that has rarely been
asked by neuroscientists and organismal biologists
alike: how does an organism that is undergoing plastic
(and often drastic) change avoid disintegration? How
is it that an animal can change from one phenotype
into the other while still being “functional,” for ex-
ample, able to forage and escape from predators?
Many animals have solved this problem by introduc-
ing a developmental stage that allows an almost com-
plete rebuilding of the organism while maintaining its
integrity (e.g., the pupa in holometabolous insects;
Truman and Riddiford, 2002). But such a drastic
reduction in functionality may not be adaptive for
animals that change their phenotype as adults. Figure
3 illustrates the problem with an example from A.
burtoni. Only 3 of the 14 phenotypic characters
known to be under environmental (social) control are
shown. Note that the (reversible) changes are in the
endocrine axes (reproduction, growth) and in behav-
ior asymmetrical depending on the direction of the

phenotypic change, likely displaying an “environmen-
tal optimism” in an unstable world where reproduc-
tive opportunities may change quickly (Hofmann and
Fernald, 2001; White et al., 2002). Moreover, time
constants and direction of change in growth and re-
production, which are usually tightly coupled in the
homeostatic animal, are different during phenotypic
transition. In my mind, plasticity is only half under-
stood until we begin to address the question of ro-
bustness. Although there have been some studies on
how robustness emerges in genetic and cellular net-
works (Barkai and Leibler, 1997; Alon et al., 1999),
the question has received only scant attention from
neuroscientists. The interplay between plasticity and
robustness in the nervous system has been highlighted
in an exemplary fashion in marsupials where the
removal of up to 75% of the cortical neuroepithelial
sheet early in development results in normal relation-
ships between visual, somatosensory, and auditory
cortical fields on the remaining cortical sheet (Huff-
man et al., 1999; Krubitzer and Huffman, 2000).

Careful perturbations of the environment can not
only be used to study the molecular mechanisms that
enable a system to buffer its phenotype against envi-
ronmental change. In fact, I believe that thoroughly
designed expression profiling experiments can also
help to unravel the mechanisms constituting robust-
ness during plastic change. For example, we are cur-
rently comparing expression profiles of territorial and
nonterritorial fish (which represent the two opposing
phenotypic endpoints in this system) as well as pro-
files taken at selected time points during transition
from one phenotype to the other. This way, we may be
able to identify genes that show a characteristic ac-
tivity pattern only in the transition phase. One chal-
lenge will be to determine whether any of these genes
are “robustness genes” that encode, for example, spe-
cific transcription factors, which actively stabilize the

Figure 2 Example of a “phenotypically plastic” fish, built with plastic building blocks, to illustrate
how differential regulation of gene expression can implement plastic changes in phenotype.
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organism during change. Alternatively, differential
expression of these genes could be merely a conse-
quence of the transition itself. Alternatively (or in
addition), robustness may emerge from the action of
complex networks of molecules, neurons, and cir-
cuits.

CONCLUSIONS

The ideas presented here are an attempt to combine
mechanistic and organismal concepts with modern
genomics techniques to gain an integrated understand-
ing of behavioral and neural plasticity. Looking at one

gene or one phenotypic character at a time cannot
address the complexity of gene–environment interac-
tions underlying plastic phenotypes. My hope is that
by applying functional genomics to study the molec-
ular, neural, and neuroendocrine basis of plasticity
and its twin sister, robustness, we will gain insights
that will ultimately unite reductionist and integrative
approaches to brain and behavior.

I thank Oliver Hobert for inviting me to write this essay
and for his patience during its gestation. I am grateful to
Susan Renn and Laura Garwin for their comments on an
earlier version of the manuscript, and to Russell Fernald for
his support and encouragement over the years.

Figure 3 Behavioral and neuroendocrine trajectory of phenotypic plasticity in the African cichlid
fish A. burtoni. Changes of reproductive and growth axes plotted as dominance behavior (circles)
changes with time. Note the hysteresis-like function as changes in social phenotype are asymmetric
with regard to behavior and endocrine status: Although the behavioral change after social defeat
(T3NT) is immediate and faster than in ascending animals (NT3T), the latter gain fully
reproductive physiology (T) within only a week, while T3NTs allow up to 3 weeks for their
reproductive axis to be downregulated to a reproductively inactive (NT) level. The growth axis
remains upregulated while the reproductive axis becomes activated as an animal ascends in the
dominance hierarchy. However, once established as a dominant and reproductively active animal
(T), growth is downregulated. Conversely, after losing dominance (T3NT) and attaining nonre-
productive (NT) status, growth becomes upregulated again at the same time as reproduction is
downregulated. Note that the temporal dynamics of only three of about 15 phenotypic characters
known to be under social control in this species are shown. (Modified after Hofmann and Fernald,
2000, 2001; White et al., 2002.)
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