
Functional classification of drugs by properties of their
pairwise interactions
Pamela Yeh1, Ariane I Tschumi1 & Roy Kishony1,2

Multidrug treatments are increasingly important in medicine
and for probing biological systems1–6. Although many studies
have focused on interactions between specific drugs, little is
known about the system properties of a full drug interaction
network6. Like their genetic counterparts, two drugs may
have no interaction, or they may interact synergistically or
antagonistically to increase or suppress their individual effects.
Here we use a sensitive bioluminescence technique7,8 to
provide quantitative measurements of pairwise interactions
among 21 antibiotics that affect growth rate in Escherichia
coli. We find that the drug interaction network possesses a
special property: it can be separated into classes of drugs such
that any two classes interact either purely synergistically or
purely antagonistically. These classes correspond directly to the
cellular functions affected by the drugs. This network approach
provides a new conceptual framework for understanding the
functional mechanisms of drugs and their cellular targets and
can be applied in systems intractable to mutant screening,
biochemistry or microscopy.

Drugs and other small molecules represent alternatives to mutation
for exploring the effects of perturbations on biological systems9. Much
as epistasis among mutations provides a basis for analysis of gene func-
tion10–12, so the interactions among multiple drugs provide a means
to understand their mechanisms of action. In analogy to mutations,
such epistatic interactions between drugs can be classified into three
main types: additive (no interaction), synergistic (demonstrating a
larger-than-additive effect) and antagonistic (having a smaller-than-
additive effect; Fig. 1a)6,10,13,14. On the basis of these definitions, a
pairwise drug interaction network can be defined and measured
within a set of biologically relevant small molecules (Fig. 1b).

Networks of epistatic interactions encode valuable functional infor-
mation10–12,15,16. We have shown recently that functional modules in
yeast metabolism can be identified purely on the basis of epistasis
networks by identifying classes of genes that interact monochromati-
cally; that is, with purely synergistic or purely antagonistic epistatic
links between any pair of classes16. This classification scheme was
implemented using the Prism algorithm (Fig. 1b–f)16. Here, we build
on this approach and on the fact that drugs within the same functional
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Figure 1 Clustering of individual drugs into functional classes solely on
the basis of properties of their mutual interaction network. (a) Schematic

illustration of additive, synergistic and antagonistic interactions between

drugs X and Y by measurements of bacterial growth under the following

conditions: no drugs, drug X only, drug Y only, and both drugs X and Y.

(b–d) A network (b) of synergistic interactions (red lines) and antagonistic

interactions (green lines) between drugs (black circles) can be clustered into

functional classes that interact with each other monochromatically (that is,

with purely synergistic or purely antagonistic interactions between any two

classes; c). This classification generates a system-level perspective of the

drug network (d). (e,f) Two independent observations indicate whether a new

drug (Z) will be clustered into a particular drug class (a, dashed oval): mixed

synergistic and antagonistic intraclass interactions of Z with a (e, thin dotted

green and red lines) and nonconflicting interclass interactions of Z (e, dotted

thin lines) and a (e, dotted thick lines) with all other classes. Both intra-

and interclass indications are depicted in e, and the drug is clustered

(black arrow) with an existing class. If drug Z has no such intra- or interclass

association with any existing drug class, the drug will be clustered in a new

class (f).
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category often interact with other drugs in similar ways17, and we
develop a new conceptual framework for understanding functional
classification of drugs in drug-drug interaction networks. We first
describe the experimental system we used to quantitatively measure
epistasis among pairs of drugs. We then apply a computational
analysis approach to classify the resulting interaction network into
monochromatically interacting classes. Finally, we examine implica-
tions of the approach for identifying mechanisms of drug action.

We selected 21 antibiotics that cover a wide range of mechanisms of
action, including drugs that target cell wall synthesis, nucleic acid
synthesis, protein synthesis and folic acid synthesis (Table 1)18,19. We
also included the anticancer drug bleomycin. To quantify epistasis
experimentally, we systematically measured the effects of pairs of
antibiotics on the growth rate of E. coli. We used a bioluminescence
assay that allows accurate measurements of bacterial growth rates with

a sensitivity exceeding that of standard optical density techniques by
three orders of magnitude (Supplementary Fig. 1 online)7,8.

To measure drug interactions, we first needed to determine appro-
priate concentrations for each single drug. In medical research,
emphasis is usually placed on high concentrations of antibiotics,
above the minimum inhibitory concentrations19. Here, we chose to
focus on sublethal concentrations of drugs20 because they provide a
direct analogy to mutations used in genetic epistasis studies and
because such small perturbations are potentially more reflective of
the physiology of the wild-type bacterial state. For each single
antibiotic, we measured a dose-response curve (Supplementary
Fig. 2 online) to find a nonlethal concentration at which the effect
on growth rate was small but measurable, normally 50–90% of the
growth rate in the absence of drugs. (A few drugs, including
novobiocin and rifampicin, did not show clear nonlethal effects
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Table 1 List of all drugs used in the study, abbreviation, dose used and mechanism of action

Drug Drug abbreviation Dose (mg ml–1) Main mechanism(s) of action Mechanism abbreviation

Chloramphenicol CHL 1 Protein synthesis, 50S R

Clindamycin CLI 4 Protein synthesis, 50S R

Erythromycin ERY 4 Protein synthesis, 50S R

Spiramycin SPR 20 Protein synthesis, 50S R

Fusidic acid FUS 40 Protein synthesis, 50S R

Amikacin AMK 20 Aminoglycoside, protein synthesis, 30S A

Tobramycin TOB 0.9 Aminoglycoside, protein synthesis, 30S A

Streptomycin STR 5 Aminoglycoside, protein synthesis, 30S A

Tetracycline TET 2 Protein synthesis, 30S R

Doxycycline hyclate DOX 1 Protein synthesis, 30S R

Spectinomycin SPX 9 Protein synthesis, 30S R

Piperacillin PIP 0.8 Cell wall W

Ampicillin AMP 5 Cell wall W

Cefoxitin FOX 0.8 Cell wall W

Nalidixic acid NAL 2 DNA gyrase D

Lomefloxacin LOM 0.07 DNA gyrase D

Ciprofloxacin CPR 0.006 DNA gyrase D

Bleomycin BLM 5 Nucleic acid, anticancer drug B

Sulfamonomethoxine SLF 0.1 Folic acid biosynthesis F

Trimethoprim TMP 0.5 Folic acid biosynthesis F

Nitrofurantoin NIT 0.3 Multiple mechanisms M
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Figure 2 Experimental classification of

drug interactions into four types using

bioluminescence measurements of bacterial

growth in the presence of sublethal

concentrations of antibiotics. The pairs of

antibiotics illustrate synergistic (a), additive

(b), antagonistic buffering (c) and antagonistic
suppression (d) interactions (see Table 1 for

drug abbreviations). The number of bacteria

(proportional to bioluminescence counts per

second (c.p.s)8) is shown from two replicates, for

control with no drugs (f, solid black lines), each

single drug (X, Y; blue and magenta lines) and

the double-drug combination (X + Y, dashed

black lines). Insets: normalized growth rates (W)

with error bars for f, X, Y and X+Y, from left to

right, respectively. Note the contrast between

the interactions of piperacillin with the 50S

ribosomal subunit drug erythromycin (a, ERY-PIP,

synergistic) and the 30S ribosomal subunit drug

tetracycline (c, TET-PIP, antagonistic).
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on growth rate and were therefore excluded from the study; see
Supplementary Fig. 2.)

Having chosen effective nonlethal concentrations for each drug, we
then conducted pairwise interaction experiments (see Supplementary
Note and Supplementary Fig. 3 online for dosage dependence
epistasis). For each pair of drugs, we set up, in parallel and on the
same microtiter plate, four types of samples, all containing the same
E. coli strain: control wells with no antibiotics, wells containing each of
the two antibiotics individually and wells with the two antibiotics
combined. This allowed for comparisons, within parallel experiments,
of the normalized reduced growth rate caused by the two antibiotics
(WXY ¼ gXY / gf ), where gXY and gf are the measured growth rates
with two antibiotics and with no antibiotics, respectively, versus that
of each of the single antibiotics (WX ¼ gX / gf , WY ¼ gY / gf ). Within
each experimental set, we examined all pairwise interactions in at least
two replicates. Furthermore, we conducted several independent
experimental replicates on different days for each pair of drugs.

The results allowed us to categorize drug interactions into four
types: additive, synergistic, antagonistic buffering and antagonistic
suppression (see examples in Fig. 2 and the complete data set in

Fig. 3a). We define additivity according to Bliss14: two drugs are
considered additive if the relative phenotypic effect of each of the
drugs does not depend on the presence of the other drug (WXY ¼
WXWY). We use this definition of additivity because of its simplicity
and, more importantly, because it provides an exact analogy to the
definition of epistasis conventionally used for genetic perturba-
tions10,14 (for an alternative definition, see ref. 13). Deviations from
additivity are denoted by ~e and are quantified using the following
scale: ~e ¼ (WXY � WXWY) / | ~WXY � WXWY|, where ~WXY ¼ min[WX,
WY] for WXY 4 WXWY and is 0 otherwise16. For WXY 4 min[WX,
WY], ~e ¼ (WXY – min[WX, WY]) / (1 – min[WX, WY]) + 1. This scale
was introduced in ref. 16; here we extend the definition of ~e to account
for suppressing interactions as well (see complete definition in
Fig. 3b). On the ~e scale, synthetic lethal interactions (that is, no
growth during exposure to double-drug combinations (WXY ¼ 0,
Fig. 2a) are mapped to ~e ¼ �1; additive interactions (WXY ¼ WXWY,
Fig. 2b) are mapped to ~e ¼ 0; antagonistic buffering, when one drug
completely masks the effect of the other (WXY ¼ min[WX, WY],
Fig. 2c), is mapped to ~e ¼ 1; antagonistic suppression, when the
combination of drugs yields a higher growth rate than at least one of
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Figure 3 Systematic measurements of pairwise interactions between antibiotics. (a) Growth measurements and classification of interaction for all pairwise

combinations of drugs X and Y (see Table 1 for drug abbreviations). Within each panel, the bars represent measured growth rates for, from left to right: no

drugs (f), drug X only, drug Y only and the combination of the two drugs X and Y (see inset). Error bars represent variability in replicate measurements

(see Methods). The background color of each graph designates the form of epistasis according to the scale in b: synergistic (red: ~emax o �0.5; pink:

�0.5 o ~emax o �0.25), antagonistic buffering (green: 0.5 o ~emin o 1.15; light green: 0.25 o ~emin o 0.5), antagonistic suppression (blue: ~emin 4 1.15)

or additive (white: �0.25 o ~emax o 0.5 and �0.5 o ~emin o 0.25). Cases that do not fall into any of these categories are labeled inconclusive (gray

background). ~emin and ~emax define our confidence interval for ~e (Methods). (b) Graphic representation defining the epistasis interaction scale ~e (WXY, WX, WY)

as a function of the normalized growth rate under the double-drug combination (WXY) and the two single drugs (WX, WY)
16. The histogram of ~e over all drug

pairs (at left) shows a trimodal distribution of interactions, with antagonistic, additive and synergistic modes.
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the single drugs by itself (WXY 4 min[WX,WY], Fig. 2d), corresponds
to ~e 4 1; and the extreme case of complete recovery of growth
(WXY ¼ 1) maps to ~e ¼ 2. In agreement with theoretical predictions16,
we found that the distribution of ~e is trimodal, allowing a relatively
clear separation between synergistic, additive and antagonistic modes
(Fig. 3b).

To represent the interaction data as a network (Fig. 4a), we
calculated the value of ~e and its confidence interval (~emin, ~emax; see
Methods) for each pair and applied the following thresholds: for
~emax o �0.5, the interaction is considered synergistic; for ~emin 4 0.5,
antagonistic; otherwise, the interaction is scored as additive. Our
results were not very sensitive to these thresholds (Supplementary
Note). Cases that were inconclusive within the measurement error
were categorized as undetermined. We then applied the Prism algo-
rithm (see Methods and ref. 16) to classify the drugs, on the basis of
the similarity in their interaction with other drugs, into subclasses that
interact with each other monochromatically (Fig. 4b). To determine
the placement of a drug, Z, into a specific class, a, two independent
observations are used. First, if Z interacts both antagonistically and
synergistically with drugs in a, Z must be placed in class a to avoid
violation of monochromaticity (intraclass; Fig. 1e). Second, to be
placed in class a, all interactions of Z with all other classes must not
conflict with the interactions of a with all other classes. Otherwise, the
new drug will cluster by itself; that is, start a new class (Fig. 1f). If
these two rules are conflicting, such that one rule dictates inclusion in

a cluster, and the other rules dictates exclusion, then the drug will have
non-monochromatic interactions. In that case, the algorithm will
place the drug in a cluster that minimizes the total number of such
non-monochromatic links (see nitrofurantoin in Fig. 4b).

We found that the individual drugs can be clustered almost
perfectly into monochromatically interacting classes (with one
notable exception, to be discussed below). This mathematical property
is very rare in random networks (P o 10�3; Supplementary Fig. 4
online). Notably, the resulting monochromatically interacting classes
correspond strongly with the putative function of the drugs (Fig. 4b).
For example, the two folic acid biosynthesis inhibitors, sulfamono-
methoxine and trimethoprim, cluster together. Similarly, drugs
affecting the cell wall cluster together, as do the aminoglycosides
and DNA gyrase inhibitor drugs. The protein synthesis drugs,
however, do not cluster in a single class: rather, the classification of
these drugs reflects a separation into 50S and 30S ribosomal sub-
unit inhibitors. This separation results from different types of inter-
action that these subclasses show with the cell-wall synthesis inhi-
bitor class21. We found that although 50S drugs interact antagonisti-
cally with cell-wall drugs, 30S drugs interact synergistically
(also compare Fig. 2a with Fig. 2c). The only exception to this
separation is chloramphenicol, which affects the 50S subunit
but clusters with the 30S class (note that chloramphenicol showed
neither antagonistic nor synergistic interaction with the cell wall
drug class).
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Figure 4 Unsupervised classification of the antibiotic network into monochromatically interacting classes of drugs with similar mechanisms of action.

(a) The unclustered network of drug-drug interactions with synergistic (red), antagonistic buffering (green) and antagonistic suppression (blue) links.

(b) Prism algorithm classification of drugs into monochromatically interacting functional classes. This unsupervised clustering shows good agreement with

known functional mechanism of the drugs (single letter inside each node; see Table 1). Bleomycin (BLM), which is believed to affect DNA synthesis,

although its mechanism is not well understood, cannot be clustered monochromatically with any other class. The multifunctional drug nitrofurantoin (NIT)

shows non-monochromatic interactions. (c) System-level interactions between the drug classes defined in b. Larger ellipses show higher-level classification of

DNA gyrase inhibitors (D) with inhibitors of biosynthesis of DNA precursors (F) and classification of the two subclasses of drugs involved in the inhibition of

protein synthesis via the 50S ribosomal subunit (R).
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In general, drug-drug interactions may be of a chemical nature—
competition for the same binding site, for example—or may have a
genetic basis, reflecting functional connections between target genes.
We find that the Prism classification reflects mostly cellular function
rather than chemical structure. A good example of this is spectino-
mycin, which is structurally an aminoglycoside18 but clustered with
the 30S drugs in accordance with its function. This highlights the
power of drug interaction networks to reflect true biological function.

The classification of drugs into monochromatically interacting
classes allows us to extend the notion of epistatic interactions from
the level of individual drug-drug interactions to the level of interac-
tions between functional classes (Fig. 4c). Some of these class-class
interactions are well known and documented, such as the
synergy between the aminoglycoside and cell-wall drug classes18.
Others are less well known and to our knowledge have not
been previously identified, such as the difference in interaction
between the two protein synthesis classes, 50S and 30S, with cell
wall drugs. A higher-level step in the hierarchical Prism classification is
the clustering of the DNA gyrase inhibitors and the folic acid
inhibitors (Fig. 4c). This is likely to reflect the fact that folic acid
biosynthesis is required for DNA synthesis. Another higher-level
classification is the clustering of the two classes affecting the
50S subunit in protein synthesis (Fig. 4c). This high-level step is
not fully monochromatic but is nevertheless still performed by
Prism (see Methods for explanation of how Prism deals with non-
monochromatic interactions).

Network analysis can also be used to uncover drugs with multiple
functions, and this is highlighted by nitrofurantoin, which does not
exhibit monochromaticity. This is a particularly interesting exception
to monochromaticity because nitrofurantoin, unlike most other drugs
in the network, is a synthetic drug that acts on more than one
pathway—it affects DNA synthesis, protein synthesis and cell wall
synthesis18. The multifunctionality of nitrofurantoin is probably the
reason why it cannot be clustered monochromatically in the network.
Thus, an unanticipated feature of this drug interaction network
method is that it is likely to detect multifunctionality. A generalization
of this case may suggest a way to screen for drugs with multiple modes
of action, although there may be other explanations for non-mono-
chromatic interactions, including differences in metabolism of the
drug or existence of specific resistance mechanisms17.

Another potential use of our approach is to identify drugs with
novel mechanisms of action, which can be identified because they
cannot cluster monochromatically with any other functional class. We
tested a drug whose functional mechanism is less well understood: the
anticancer antibiotic bleomycin, which suppresses growth of E. coli
presumably through oxidation and degradation of DNA22. Notably,
we found that bleomycin did not cluster monochromatically with any
of the other drug classes (Fig. 4b). Furthermore, unlike nitrofurantoin,
bleomycin showed only monochromatic interactions within any one
class, indicating the drug did not need to be clustered within any
existing class (see Fig. 1e). These two observations require that
bleomycin be clustered as a separate functional class. The fact that
bleomycin is clustered by itself highlights one of the potentially
powerful aspects of this conceptual framework: it may allow rapid
screening for drugs that are not only potent but that work through a
novel mechanism of action.

We provide a complete and systematic analysis of a drug-drug
interaction network. Systems analysis of the interaction network
demonstrates that drugs can be classified according to their action
mechanism based on their interactions with other functional drug
classes. The ability to classify drug function based solely on phenotypic

measurements and without the tools of biochemistry or micro-
scopy21,23,24 can provide a simple and powerful method for screening
new drugs with multiple or novel mechanisms of action. Our systems
approach is general in nature and could be applied to other biological
systems. It would be particularly useful if the approach could be
generalized to in vivo studies and to a wider range of phenotypes
despite added complexity of host-drug interaction. Furthermore,
applying network approaches25–27 to drug interactions may help
suggest new drug combinations and highlight the importance of
gene-environment interactions28, including, in particular, the resis-
tance and persistence of bacteria to antibiotics1,4,5,29 and of cancer cells
to antitumor drugs30.

METHODS
Bacterial strains and growth conditions. Plasmid pCS-l7,8, expressing the lux

operon from a constitutive lambda promoter, was transformed into a wild-type

MG1655 strain. Growth medium was M63 minimal medium supplemented

with 0.2% glucose, 0.01% CAS amino acids, 0.5 mg ml–1 thiamine. Single-

colony transformants were grown to OD600 ¼ 0.6 at 30 1C with shaking. Cell

stocks were prepared at concentrations of 105 cells ml–1 and stored in multiple

aliquots with 15% glycerol at �80 1C.

Growth rate assay. We measured bacterial growth rate using a recently

developed bioluminescence technique that allows highly accurate measure-

ments of bacterial densities versus time over three to four orders of magnitude

of dynamic range8. The measurement is based on bioluminescence photon

counting from growing cultures. As we only use the slope to determine growth

rates, our values are do not depend on possible changes in the luminescence

intensity per cell that could be caused by the antibiotic treatments. The assay

was done in 96-well plates (Costar) sealed with clear adhesive tape (Perkin-

Elmer) using the Perkin-Elmer TopCount NXT Microplate Scintillation and

Luminescence Counter. The reader was kept in a 30 1C room with 70% relative

humidity, and readings were acquired with a 1-s integration time per well. For

each set of experiments, we ran 10–14 plates in parallel, resulting in each plate

being read approximately once every 30–40 min. Plates were cycled in the

TopCount for 48–96 h. To eliminate minor spatial temperature gradients across

the plates, we used a ventilation scheme around the 96-well plate towers (see

Supplementary Fig. 1 for plate uniformity). Wells were filled with 100 ml

growth medium and inoculated with a fresh �80 1C cell stock aliquot diluted

1:1,000 (corresponding to a density of ten cells per well). Log of the measured

counts minus the photodetector background (20 counts per second (c.p.s.))

were plotted and analyzed using Matlab. Numerical values for growth rates (g)

were obtained by the slope of the line of best fit passing through the data in the

exponential region (typically between 5 � 102 and 5 � 103 c.p.s.). Any well that

did not have growth after the wild-type wells had undergone 30 cell cycles

(approximately 48 h after start of experiment) was considered dead (g ¼ 0).

Determining single-drug concentrations. We tested a range of concentrations

for each drug, typically 11 different concentrations with twofold intervals

(Supplementary Fig. 2). We preserved 1–2 ml 10� �20 1C stock of all drug

concentrations in M63 media to allow for accurate replication of the concen-

trations in the subsequent two-drug experiments. For each drug, we chose the

concentration that reduced growth rate by a nonlethal but substantial effect

relative to the no-drug control (typically 10–50% reduction in growth rate;

however, suppression interactions were often better resolved in larger single

effects). See the Supplementary Note for a discussion of dose dependence.

Drug interaction assay. To measure the combined effect of two drugs versus

their individual effects, we filled wells with 100 ml total medium consisting of 80

ml of growth medium inoculated with 1:1,000 of our �80 1C bacterial cell stock

and one of the following four options: (i) 20 ml of M63 media only, for control;

(ii) 10 ml of M63 media only and 10 ml 10� stock of drug X (in M63 media), to

measure the growth rate of X singly; (iii) the same for drug Y; or (iv) 10 ml 10�
stock of drug X and 10 ml of 10� stock of drug Y, to measure the two-drug

growth rate. We tried to keep the single-drug concentration of each drug fixed

for all of its pairwise combinations, which often required fine-tuning of
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dosages. The concentration (as evidenced by the single-drug wells) of some

of the drugs was not always constant across all experiments, especially for

drugs with high sensitivity to dosage (see, for example, piperacillin in

Supplementary Fig. 2).

Classification of drug interactions. To characterize epistatic effects between

pairs of drugs, we compared the effects of each double-drug combination with

those of the corresponding single drugs at the same dose, measured in parallel

and on the same plate. Multiple well replicates (B100 for no drugs, B16 for

each single drug and at least two for the double-drug combination) were

conducted for each growth condition C (that is, for no drugs, C ¼ f; for single

drugs, C ¼ X or Y; for both drugs, C ¼ XY). For each well (i) in growth

condition C we measured the growth rate (giC) and normalized it to the average

growth rate gf of the no-drug control, Wi
C ¼ giC=gf. We defined WC, Wmin

C and

Wmax
C as the median, 10th and 90th percentiles over i of Wi

C, respectively. When

there were fewer than ten well replicates, we defined Wmin
C and Wmax

C as the

minimal and maximal values over all measurements. As the variability of small

statistical samples may not correctly reflect the actual variability in the data, we

assumed a minimum of 2% error (Supplementary Fig. 1) in cases in which the

replicate variability was smaller. For each drug pair X and Y, we define

the median epistasis value ~eXY ¼ ~e(WXY,WX,WY), where the function
~e(WXY,WX,WY) is defined in Figure 3b. We further defined the confidence

interval for ~e as

~emin ¼ min
wXY;wX ;wY

~eðwXY;wX;wYÞ

and

~emax ¼ max
wXY;wX ;wY

~eðwXY;wX;wYÞ;

where wXY, wX and wY range within their respective confidence intervals defined

above. The difference ~emax � ~emin reflects the quality of the experiment and was

used to choose a good experimental replicate for a particular drug pair.

The interaction was considered antagonistic if ~emin 4 0.5 and synergistic if
~emaxo �0.5.

The Prism algorithm. The original Prism algorithm16 is designed to cluster

networks into purely monochromatic classes. This algorithm, however, is not

particularity suited for dealing with networks that cannot be clustered purely

monochromatically or with measurement errors and variability. We have

therefore constructed a new version of the algorithm, PrismII, in which

monochromaticity is not strictly enforced but is instead accounted for as an

entropy cost term. We start with each drug assigned into a distinct cluster. In

sequential clustering steps, the pairs of clusters (x, y) with minimal distance are

combined until the whole network is clustered into a single class. The distance

Fx,y between clusters x and y is calculated as

Fx;y ¼ min
X2x;Y2y

feX;Yg � TDSx;y;

with the Euclidean distance

eX;Y ¼ 1

4N

XN

Z¼ 1

ð~eX;Z � ~eY;ZÞ2

and a monochromaticity entropy term:

DSx;y ¼ Sðmx;yÞ �
X

z 6¼ x;y

½Sðmx;z +my;zÞ � Sðmx;zÞ � Sðmy;zÞ�:

mx;y ¼ fm�
x;y;m

+
x;yg is a vector containing the number of synergistic (–) and

antagonistic (+) links between clusters x and y. The entropy function is

defined by

SðmÞ ¼ ðm+ +m�Þðp+ log p+ + p� log p�Þ;

where p+=� ¼ m+=�=ðm+ +m�Þ: T is a free parameter and was set to 0.1 in our

analysis. Twofold variations in T gave similar results.

Note: Supplementary information is available on the Nature Genetics website.
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