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ABSTRACT
Motivation: Genetic networks regulate key processes in living
cells. Various methods have been suggested to reconstruct
network architecture from gene expression data. However,
most approaches are based on qualitative models that provide
only rough approximations of the underlying events, and lack
the quantitative aspects that are critical for understanding the
proper function of biomolecular systems.
Results: We present fine-grained dynamical models of gene
transcription and develop methods for reconstructing them
from gene expression data within the framework of a gener-
ative probabilistic model. Unlike previous works, we employ
quantitative transcription rates, and simultaneously estimate
both the kinetic parameters that govern these rates, and the
activity levels of unobserved regulators that control them. We
apply our approach to expression datasets from yeast and
show that we can learn the unknown regulator activity profiles,
as well as the binding affinity parameters. We also introduce a
novel structure learning algorithm, and demonstrate its power
to accurately reconstruct the regulatory network from those
datasets.
Contact: nir@cs.huji.ac.il

1 INTRODUCTION
Understanding the organization and function of gene reg-
ulatory networks is a key experimental and computational
challenge in molecular biology. Recent studies (Guet et al.,
2002; Kitano, 2002) indicate that network function depends
on both qualitative and quantitative aspects of network organ-
ization. For example, Guet et al. (2002) show how differences
in quantitative reaction rates have drastic effects on the func-
tion of circuits with identical qualitative properties such as
connectivity and logic.

Various methods have been developed to reconstruct regula-
tion networks from high-throughput data, including genomic
sequences, expression profiles and transcription factor loca-
tion assays (Ong et al., 2002; Pe’er et al., 2001; Segal et al.,
2002; Simon et al., 2001; Spellman et al., 1998; Tavazoie
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et al., 1999). However, these methods are based on coarse
grained qualitative models, and cannot provide a realistic and
quantitative view of regulatory systems. Alternative methods
were recently suggested (Ronen et al., 2002) to estimate the
quantitative parameters of more biologically realistic network
models. However, these approaches are limited to networks
of known, simple architecture and cannot be generalized to
more complex architectures or unknown structures.

In this paper, we present a novel framework for the recon-
struction of quantitative, realistic, fine-grained, dynamical
models of gene regulatory networks. Given a dataset of gene
transcription rates, our algorithm reconstructs the structure
of a regulatory network, the quantitative kinetic paramet-
ers of transcription regulation, and the unobserved activity
levels of regulator proteins. This focus on learning unobserved
regulator activity levels is crucial, as activity levels are the
result of a large variety of upstream biochemical events, such
as RNA and protein expression, biochemical modifications,
degradation rates and changes in sub-cellular localization.
However, neither activity levels nor most of the events
that regulate them are measured today on a genomic scale.
Thus, our models handle activity levels as unobserved vari-
ables, that indirectly encompass upstream regulatory events,
without directly modeling these events. In particular, unlike
previous work, we do not use the expression levels of regu-
lators, and can thus identify the results of post-transcriptional
events.

Our framework is based on a generative probabilistic model,
dynamic Bayesian networks, that accounts for the processes
that generated the data, handles noise in a principled way
and incorporates our prior biological knowledge into the solu-
tion. We model the underlying biochemical reaction equations
and the sources of noise that can affect the dynamics of the
system. The model is flexible, and can accommodate net-
works of realistic complexity, including activators, repressors,
combinatorial regulation, and cooperative and competitive
interactions between regulators.

Our approach can handle networks of either known, par-
tially known or unknown architecture. In particular, we
introduce a novel learning algorithm for reconstructing the
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Fig. 1. A kinematic model of transcription regulation by a single activator. (a) An active regulator protein, H , may bind to and disassociate
from a target gene’s promoter, with rate constants κb and κd , respectively. In a population of cells, fractions S− and SH of cells have free
and bound promoters, respectively, and satisfy the steady-state reaction equations. The bound gene is transcribed with a rate g(H) = βSH .
(b) The regulation equation, describing the transcription rate as a function of the active regulator concentration H , is in the Michaelis–Menten
form. The transcription rate is a non-linear function of the activity level of H that depends on γ = κb/κd ; In particular, at high levels of H ,
the transcription rate saturates. (c) Temporal behaviour of a single activator and the transcription rates of genes it regulates with different
kinematic parameters.

network structure. This algorithm reassigns regulators to
genes as well as detects when additional regulators should
be added to the network, thus both improving existing struc-
tures and learning regulatory networks ab initio. We applied
our methods to data from the yeast cell cycle regulation sys-
tem, and were able to recover both regulator activity profiles
and accurate parameters for networks of known architecture,
as well as successfully learn a complex regulatory network
ab initio. Overall, our approach combines for the first time the
network reconstruction capabilities of qualitative approaches
with the biochemical detail of quantitative ones, into a single
framework for the reconstruction of realistic complex models
of gene regulation from gene expression data.

2 TRANSCRIPTIONAL REGULATION
MODEL

To develop a quantitative realistic probabilistic model of
gene regulatory networks, we start by examining networks
of known structure and unknown kinetic parameters (learning
unknown network structure will be addressed in Section 3).

First, we derive a kinematic model of how the transcription
rate of a single gene depends on its regulators. We then con-
sider how to model the behaviour of multiple genes over time,
and how to learn the model parameters from actual meas-
urements, including transcriptional rates and the unobserved
activity levels of regulators.

2.1 Kinematic model of regulation
Our regulation model (Fig. 1) is based on a regulation function
that describes the transcription rate of a target gene (number
of RNA molecules transcribed per unit of time per cell) as a
function of the concentration of active regulator(s) (number
of proteins in active form in nucleus per cell). Consistent with
the input expression profiles that are typically measured on

cell populations, we assume that we are examining a large
population of cells, and that the derived transcription rates are
actually average rates over this population. We assume that
the change in concentration of the regulator H is much slower
than the kinetics of reactions described, and that at each time
point the system is nearly at an equilibrium. Thus, we model
binding and disassociation reactions at steady-state. Finally,
we assume that the number of active regulator molecules in
each cell is much larger than the number of its target sites, thus
neglecting any possible competition between different target
genes on the same regulator.

We start with a single regulator, and then generalize to mul-
tiple regulators. In the simplest case (Fig. 1a), of a single
activator, the regulation function takes the familiar, non-linear
Michaelis–Menten form:

g(H : β, γ ) = β
γH

1 + γH
(1)

where H denotes the concentration of active regulator protein,
β is the maximum transcription rate the gene can achieve and
γ is κb/κd the ratio of association and disassociation constants
(Fig. 1b and c).

To illustrate the general case of multiple regulators we con-
sider a gene that has two regulators, with activity levels H1

and H2. Depending on whether no regulator, H1, H2 or both
are bound to the promoter, we distinguish four possible bind-
ing site fractions, denoted S−,−, SH1,−, S−,H2 , and SH1,H2 . Solving
the steady-state equations, we get the different binding state
distribution:

S−,− = 1/Z S−,H2 = γ2H2/Z

SH1,− = γ1H1/Z SH1,H2 = γ1H1γ2H2/Z,

where Z = (1 + γ1H1)(1 + γ2H2) is a normalizing constant.
We now can define a regulation function for two regulators as
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Fig. 2. Schematic representation of a DBN model for temporal gene regulation. (a) A regulation diagram with two regulators and four targets.
(b) An example of the Bayesian network induced by this diagram for three time points.

a generic weighted sum over all possible binding states:

g(H1, H2 : �α, β, γ1, γ2)

= β(α−,−S−,− + α−,H2S−,H2 + αH1,−SH1,− + αH1,H2SH1,H2),
(2)

where �α is the vector of α parameters indicating the ‘product-
ive’ binding states that lead to transcription. Here, we focus
on cases where α take binary values. For example, for two
non-cooperative activators we set αH1,−, α−,H2 , αH1,H2 to 1, and
α−,− to 0, reflecting that transcription occurs whenever at least
one regulator is bound. To model general biological models,
where different productive states may result in different rates,
we can allow α to take real values.

Note, that this approach is general and is easily extended
to more than two regulators by introducing additional binding
states with different associated probabilities and transcription
rates. It can also be extended to handle more complex scen-
arios, such as competitive or cooperative interactions between
different regulators or a single regulator with two binding sites,
each with a different effect on transcription. In this initial study
we focus on the simple variants of the model.

2.2 Temporal modeling of regulons using
dynamic bayesian networks

To model a regulatory network, we need to consider not only
multiple regulators, but also multiple target genes and their
temporal behaviour. Since regulators typically regulate mul-
tiple targets in the same regulon (Lee et al., 2002; Shen-Orr
et al., 2002), the same activity levels of a regulator H can be
used in the regulation functions of all its targets. However,
the functions themselves are gene-specific. Consider a simple
system of n genes that are regulated by the same regulator H

where we measure transcription rates at T time points. Is it
possible to reconstruct the values of H at different times and
the gene-specific reaction constants? Since we have n × T

observations, and we assume that these can be explained by
T values of H and 2n parameters (different β and γ for each
gene), we have an over-constrained problem when n > 2 and
T > 2. Thus, such a reconstruction is feasible in principle.

Specifically, we use the language of dynamic Bayesian net-
works (DBNs) (Friedman et al., 1998), to model the evolution
of a stationary Markovian stochastic system over discrete
time points. Our model combines a regulation diagram (e.g.
Fig. 2a) that summarizes the regulation topology between two
types of attributes: the activity of regulators H1, H2, . . . and
the transcription rates of target genes R1, R2, . . .. The state of
the system at time point t is described by random variables
H

(t)
1 , H(t)

2 , . . . and R
(t)
1 , R(t)

2 , . . . that denote the values of all
the system’s attributes at time t .

The model describes relations between variables at the
same and consecutive time points. First, to represent the
behaviour of the regulator activity attribute, we assume that
H

(t+1)
i depends on H

(t)
i . We model this dependence with the

persistence equation:

H
(t+1)
i = H

(t)
i + ε

(t+1)
hi

, (3)

where ε
(t+1)
hi

is a normally distributed noise variable with
zero mean and variance σi . By modeling the magnitude of
change, our model prefers a smoother sequence of values Hi .
Second, the transcription rate of each target gene depends on
the instantaneous activity levels of the regulators that control
it, as encoded by the regulation diagram. For example, if Rk

depends on two regulators, H1 and H2, then

R
(t)
k = g(H

(t)
1 , H(t)

2 : �αk , βk , γk,1, γk,2)(1 + ε(t)
rk

), (4)

where g(·) is the regulation function given by (2), and ε
(t)
rk

is a Gaussian noise variable with zero mean and variance σk .
Note that the noise level for Rk depends on its expected value
given the regulator activity levels. This stems from the fact that
the transcription rate is a result of a sum of stochastic events,
such as DNA binding, transcription initiation and elongation
(McAdams and Arkin, 1997). The higher the rate, the more
events are involved, resulting in a higher variance.

Figure 2b illustrates the Bayesian network structure that
corresponds to the regulation diagram of Figure 2a for three
consecutive time points. The DBN model for time range
1, . . . , T defines a joint distribution over all the random vari-
ables in these T time points. The joint density of an assignment
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to all the variables is the product of the densities of the val-
ues of error variables ε

(t)
hi

and ε
(t)
rk

that achieve equality in
Equations (3) and (4).

2.3 Parameter estimation
Once we define the DBN, we can learn the kinetic parameters
and the hidden activity levels of regulators from observa-
tions. We consider an observed set E of transcription rates
of n genes in T time points and try to optimize for the most
likely assignment of parameters and levels. Thus, assuming a
fixed regulation diagram G, we want to find parameters that
maximize the likelihood

�(h, θ : G, E) = log P(E, h | θ , G),

where h are the values of the unobserved regulator activity
levels at different times and θ are the kinetic and variance
parameters of the model. According to the DBN definition, the
term log P(E, h | θ , G) is a log probability of error variables.
To optimize the likelihood function, we use gradient ascent
on the joint space of h and θ .

To avoid over fitting of the model to the data, we match the
model complexity to the amount of available data. When data
is scarce, we fix some of the parameters in advance, whereas
when the amount of data grows, we attempt to learn more
parameters. In the current study, we preset the α parameters
according to biological knowledge, keeping the number of
free parameters low. For example, in the experiment described
in Section 4 we optimize between 3 and 4 parameters per
each of the G target genes. This number is much lower than
the number of observations (G times T , the size of the time
series).

2.4 Transcription rates
While our regulation model is based on mRNA transcription
rates, time series expression profiles typically provide us only
with mRNA abundance levels1. To recover transcription rates,
we consider how the mRNA expression level depends on both
transcription and degradation, and use a simple gene-specific
mRNA decay model:

d

dt
e
(t)
k = r

(t)
k − δke

(t)
k , (5)

where e
(t)
k is the expression level of gene k at time t and δk

is the mRNA decay rate of gene k. We assume that mRNA
decay rates may be gene-specific, but remain constant in time.
Given the decay rate, δk , and the expression measurements,
we recover r

(t)
k (up to a gene-specific multiplicative factor) by

1Our methods are applicable to time series measurements of mRNA abund-
ance from both oligonucleotides chips and from cDNA microarrays. For
cDNA arrays, where values are relative to a common reference condition
M0, we can reconstruct the expression level up to a gene-specific multiplic-
ative constant that involves the level of the gene in the reference sample and
probe-specific issues such as hybridization efficiency.

solving the differential Equation (5). Such actual decay rates
have been measured experimentally under specific conditions
by several recent genome-wide studies (Holstege et al., 1998;
Wang et al., 2002).

3 RECOVERING REGULATION DIAGRAMS
3.1 Structure selection
So far we have assumed that a defined regulation diagram is
known. The key question of inferring this diagram ab initio
from data is a structure learning (Friedman et al., 1998)
problem in the framework of DBNs: given a rate matrix
E, find the regulation diagram that is most likely to have
generated E. Note, that the likelihood of different models
is not an appropriate score here, since richer models with
more regulation relations will provably have better likelihood
than simpler ones. A standard solution is to use the BIC
score (Friedman et al., 1998; Schwarz, 1978), which pen-
alizes the likelihood term with a structure complexity penalty
term:

score(G : E) = max
h,θ

�(h, θ : G, E) − Nparam

2
log(T ),

where Nparam is the number of parameters in the model and
T is the number of time points. Once we define the score,
structure selection is posed as an optimization problem over
the discrete space of all possible regulation diagrams.

The typical approach to learn structure is by a heuristic
search, such as greedy hill climbing, that explores local moves
(e.g. all legal edge additions and deletions) in the space of
regulation diagrams. To evaluate a specific regulation dia-
gram, we need to perform parameter learning to find a good
reconstruction of the regulators for the proposed diagram.
Since such evaluations are costly, this approach is infeasible
in domains that involve many genes.

Instead, we propose an efficient algorithm to search for
the regulation diagram, based on two main ideas. First, to
allow efficient evaluation of proposed moves, we use a struc-
tural EM approach (Friedman et al., 1998), and employ
the regulator activity profiles from one diagram to approx-
imate the score of modified diagrams. Second, rather than
blindly evaluating all possible moves, we use the mathem-
atical form of the regulation functions to focus on a small
subset of promising moves. As we show below, this also
allows us to detect when new regulators should be added to
the model.

3.2 Ideal regulators profiles
To illustrate the concept that will allow us to efficiently pro-
pose moves and detect new regulators, suppose we have a
current network G, and we have maximized the parameters
and regulator activity profiles with respect to this network.
Now consider a gene Rk that is regulated by single regulator
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Fig. 3. Illustration of the ideal regulator approach. (a) A current regulator H1 and its target’s input transcription rate Rk (solid line) and
predicted rates (dashed lines). (b) An ‘ideal regulator profile’ Hnew that together with H1 predicts Rk without errors. (c) By computing the
correlation between the profile of Hnew and the activity profiles of each of the current regulators (based on the current network architecture),
we can detect regulators that potentially regulate Rk , and evaluate how well these perform in predicting the transcription rates of Rk . (d) We
reduce errors by introducing H2, the best scoring candidate, as second regulator of Rk .

H1 in the model (Fig. 3a). Since H1 predicts the transcription
rates of multiple targets (and since in reality R1 may be regu-
lated by additional regulators), H1 does not provide a perfect
prediction of R1’s transcription rate. The best reduction of
this error is by finding an ‘ideal’ second regulator for R1 that
together with H1 eliminates all predictions errors (Fig. 3b).
We now use this ideal profile to search against the current set
of regulator activity profiles. If we find a regulator H2 that is
highly correlated with the ideal one, we evaluate it as a second
regulator for Rk by searching for parameters that maximize
the likelihood of Rk given H1 and H2 (Fig. 3d).

More formally, suppose we are given a gene Rk that is reg-
ulated by H1, with parameters βk and γk,1. We want to find
a regulator profile {h(t)

new : t = 1, . . . , T } and binding affinity
γk,new such that h

(t)
new = f −1[r(t)] where

f (h) ≡ g(h
(t)
1 , h : �αk , βk , γk,1, γk,new). (6)

Since the function f is generally invertible when r
(t)
k > 0,

we can find this profile once we determine γk,new. However,
examining the definition of g, it is easy to see that we can set
γk,new arbitrarily, as it only serves to scale the values of hnew.
Thus, we get a regulator profile that is ‘ideal’ for Rk and is
unique up to rescaling.

Note, that the behaviour of the new ideal regulator can dif-
fer if we believe it is an activator or repressor and whether
it works cooperatively with the current regulator(s), as indic-
ated by the values (0 or 1) of �αk in (6). Thus, rather than
testing a single ideal regulator per gene, we construct a small
set of possible ones (with different �αk , representing different
relevant logic), which we compare to the actual regulators.
Once we find a good match, we may add a new edge from
the existing regulator to Rk . In a similar way, we may also
replace a current regulator by computing the set of possible
ideal regulator profiles (with different �αk) in the absence of
one of the current regulators of Rk , assuming that β and all
other γ values are fixed.

3.3 Learning algorithm
The algorithm iteratively improves the network structure. It
starts with some initial guess, which is either derived from
prior biological knowledge (see below), or is simply the naïve
network where all genes depend on a single regulator. Each
iteration of the algorithm consists of two phases. In the first,
we train parameters and regulator activity profiles to max-
imize the current model’s likelihood function. We then use
these to compute the ideal regulator profiles for each reg-
ulated gene, as described above. In the second phase, we
propose possible modifications to the current structure (either
addition or replacement of a regulatory connection), by com-
puting correlations between the ideal profiles and the current
regulator activity profiles. We explore each of these modifica-
tions suggested by correlations that exceed a fixed threshold,
by training the local parameters βk and γk,i for the specific tar-
get k to maximize the score. This optimization is done without
changing the regulator activity profiles, and hence changes the
likelihood only locally in terms that involve Rk . Modifications
that decrease the score are discarded, and the rest are applied
at the end of the iteration. If there are several modifications
that apply to the same Rk , we select only the one that leads to
the biggest improvement in the score.

We may also remove an existing connection, thus correct-
ing earlier mistakes. We suggest an intuitive mechanism for
selecting candidate connections for removal: if a certain reg-
ulatory connection has an associated affinity parameter which
is much lower (e.g. by a factor of 10) from the other affinity
parameters of that gene, we test this connection for removal.
As with the addition steps, if the change yields a positive
change in score—it is accepted.

3.4 Introducing new regulators
We can also introduce a new regulator into the network. This
step is applied only if no other modification is accepted.
To add a new regulator, we apply the CLUST algorithm
(Ben-Dor et al., 1999) to find clusters of ideal regulator
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profiles that are highly correlated (above 0.8), and may
correspond to a new regulator of the genes for which these
ideal profiles were generated. We evaluate each proposed new
regulator by introducing it into the network, and then apply
gradient ascent to find the best parameter values and regulat-
ors activity profiles for the modified network. We then choose
the new regulator that leads to the biggest score improvement
and add it and its target links to the current network. If no such
regulator offers a positive improvement, no action is taken.

4 RESULTS
We tested the power of our transcription regulation model
and the effectiveness of the structure learning algorithm on
a series of examples related to transcriptional regulation in
the yeast cell cycle. First, we identify kinematic paramet-
ers and regulator activity profiles for a small transcriptional
network operating at M phase, involving an activator and a
repressor. Second, we study a curated model of the com-
plex regulatory network of the entire cell cycle, and show that
we can accurately identify activity levels of regulators based
solely on our realistic modeling framework and the expression
levels of their targets. Finally, we employ our structure learn-
ing algorithm to learn a regulatory network ab initio, based
solely on expression data, and show the accuracy of both the
resulting network topology and the reconstructed regulators
and their activity profiles.

4.1 Two regulator system
Recent work shows that M phase-expressed genes in yeast
can be distinguished into two subsets. A major set which is
activated by Mcm1 and is expressed earlier in M phase, and
a minor set which is activated by Mcm1 and repressed by
Yox1, with delayed expression in late M phase. To evaluate
the dynamics of this system, we built a model of this net-
work, based on known Mcm1 and Yox1 targets (Pramila et al.,
2002), and used cell cycle mRNA expression data2 (Spellman
et al., 1998) and experimentally derived decay rates (Wang
et al., 2002), to estimate transcription rates for these genes.
We then applied our parameter learning methods on each of
the time series and learned activity profiles for the two reg-
ulators. As seen in Figure 4, the reconstructed activity level
of Yox1 peaks earlier than that of Mcm1, consistent with its
documented repressive role, and explaining the subsequent
shift in the peak transcription levels of its target genes com-
pared to that of Mcm1-exclusive targets. Surprisingly, Yox1’s
reconstructed activity peak appears relatively early in the cell
cycle, before M phase. This novel finding was also obtained
on a separate time series (data not shown) and is corroborated
by Yox1’s expression profile (Fig. 4b). Note, that the regulator
expression profiles themselves are not used in the reconstruc-
tion. This allows us to recover the hidden activity levels of

2The dataset consists of three time series that contain 17–23 time points, with
time intervals of 7–10 min.

Fig. 4. Regulator reconstruction in an activator–repressor system.
(a) The learned activity for Mcm1 (top), versus its mRNA log expres-
sion levels (middle), and its target genes transcription rates (bottom).
Vertical lines denote cell cycle start points (end of M/G1 transition).
(b) Same for the repressor Yox1.

regulators that are themselves not transcriptionaly regulated.
Thus, we accurately reconstruct the activity profile of Mcm1,
which is not transcriptionaly regulated, with a clear peak at
M phase.

4.2 Cell cycle regulation system
We next turned to a large regulatory network of known topo-
logy, assembled from location data (Lee et al., 2002) and
biological databases (Costanzo et al., 2001). In this network,
seven different transcription factors control the expression of
141 genes throughout the cell cycle, alone or in pair-wise com-
binations. Using the alpha synchronization expression time
series (Spellman et al., 1998) shown in Figure 5a, we learned
activity profiles and kinematic parameters for this complex
network. The predicted rates we learned for the 141 genes are
shown in Figure 5b.

Figure 6 shows the learned activity profiles for the seven
modeled regulators, against their mRNA expression levels
and their target genes behaviour. For all seven transcription
factors, the model automatically reconstructs cyclic activity
levels, that are consistent with their known activity based on
molecular or genetic studies. For example, Swi5’s activity
peaks at late M/G1 and early G1, consistent with its pre-
viously reported activity (McBride et al., 1999); Mbp1 and
Swi4’s activity levels peak at mid to late G1 consistent with
their role in G1/S gene expression (Baetz and Andrews, 1999);
and Fkh1 and Fkh2 peak at late S/G2 and G2/M, respect-
ively, consistent with their reported effects in genetic studies
(Hollenhorst et al., 2000). Thus, in many cases (e.g. Swi5 and
Swi4 or Fkh1 and Fkh2), the reconstructed activity levels dis-
tinguish between relatively subtle but important differences
in true biological activities, the establishment of which has
often required a large number of experiments. In some cases
(e.g. Fkh2 or Swi5), our reconstructed activity profiles closely
resemble the regulator’s expression profile. More importantly,
since our reconstruction does not use the expression levels
of the regulators, we are able to accurately reconstruct their
activity levels even if they are not regulated transcriptionaly
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Fig. 5. Comparison of ab initio structure learning versus parameter learning for the curated cell cycle regulatory diagram. (a) Measured
transcription rates for 141 genes. (b) Predicted rates in the curated model after learning parameters. (c) Predicted rates after ab initio structure
learning. (d) log p-value of target intersection groups between known and ab initio regulators. (e) Positive correlations between learned
activity profiles of known and ab initio regulators.

Fig. 6. Regulator activity profiles learned from the curated network diagram. Each profile (top) is plotted against the regulator’s mRNA log
expression levels (middle) and the average transcription rates of all its target genes (bottom).

(e.g. Mcm1), or if their expression and activity profiles are
shifted (e.g. Ace2), highlighting the power of our approach.

The full power of our framework lies in its ability to learn
not only accurate activity profiles and kinematic parameters,
but also the full network architecture ab initio. We there-
fore ran our structure learning algorithm on a naïve network
with the same 141 target genes all wired to a single activ-
ator. We allowed the algorithm to add more regulators and
change regulatory connections until convergence, surprisingly
resulting in a network with seven regulators. See Figure 5c for
predicted rates with this model.

To evaluate the quality of our ab initio reconstructed net-
work and identify the reconstructed regulators, we compared
the topology of the learned network to that of the curated one
(Fig. 5d), and the learned activity profiles to those learned
on the curated network (Fig. 5e). In some cases, such as
inferred regulator 1 and the known regulator Swi5 (Fig. 5d
and e, top row), the correspondence in both targets and activity
levels is striking. In others, a single inferred regulator corres-
ponds to two separate factors with similar activity patterns
(e.g. regulator 7 and the G1/S factors Mbp1 and Swi4). Over-
all, since in the known network some targets are regulated
by more than one factor and some factors have similar pro-
files, by combining both tests we can roughly identify most
of our inferred profiles (regulators 1, 2/3, 4/5, 6 and 7) with
known regulatory activities (Swi5, a G1 regulatory activity,
the Fkh2/Mcm1 complex, Fkh1 and MBF/SBF, respectively).
Thus, these tests indicate that the inferred regulators have

both targets and activity levels strikingly similar to those in
the known curated network, and highlight the success of our
approach in learning both correct structure and parameters in
the most stringent challenge.

Finally, despite their impressive correspondence, both the
ab initio learned network and the curated model are likely
only approximations of the true biological systems. Thus,
we combined our curated network and our structure learn-
ing approach, and used the curated network as a starting point
for the structure learning algorithm, trying to improve the
known structure. Indeed, this yielded a dramatic improve-
ment in score (610 bits), by introducing changes in the
connections for about 35 genes (despite not adding new
regulators), primarily changing genes from SBF to MBF reg-
ulation and from Fkh1 to Fkh2. These modifications suggest
novel hypotheses, potentially extending our partial biological
knowledge.

5 DISCUSSION
In this paper, we examined the question of learning the
dynamics of transcription networks, in terms of the temporal
behaviour of regulators, as well as the kinetic parameters gov-
erning their effect on their targets. Our method provides a
principled approach to handle a wide range of transcriptional
network architectures and regulation functions. Unlike previ-
ous methods based on probabilistic models (Friedman et al.,
2000; Kim et al., 2003; Ong et al., 2002; Pe’er et al., 2001), we
addressed the fact that the relevant sizes—transcription rates
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and regulator activity levels—are usually not measured. This
is done by preprocessing steps to extract transcription rates,
and by the use of hidden variables to account for unobserved
regulator activity levels. Several recent works (Battogtokh
et al., 2002; Liao et al., 2003; Perrin et al., 2003) use a fixed
regulation diagram to reconstruct unobserved regulator activ-
ity profiles and parameters. This work is the first to introduce
a network structure learning algorithm in this context. Our
algorithm is based on the notion of ‘ideal’ regulators, and we
demonstrated its power on the cell cycle regulatory network.

Our DBN-based model of transcription rates and regulator
activity levels allows us to handle these biologically relev-
ant quantities despite the indirect measurement of the former
and the lack of measurements of the latter. It also allows us
to handle the inherently noisy measurement in a principled
way, and provides a framework both for learning parameters
and for structure learning. However, our model still abstracts
away some of the explicit processes that generate the actual
observed expression data. A more explicit modeling of these
will provide a more principled treatment of different sources of
noise in the data. Furthermore, our model does not handle dir-
ectly any of the upstream events that affect regulator activity.
In fact, the current model is an open loop system, such that the
regulation of regulator activity is itself viewed as exogenous to
the system. By developing a richer modeling language we may
capture more complex reaction models, model the upstream
regulation of activity levels, and learn systems that involve
feedback mechanisms and signalling networks. Finally, such
extensions open the possibility of incorporating additional
types of data, such as binding sites models, transcription factor
binding data or protein–protein interaction data. These could
serve not only as additional sources for initialization or valida-
tion of models, but also as a primary source of observations for
model learning, thus widening the molecular scope covered
by our framework.
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